If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+10t-3=0
a = 5; b = 10; c = -3;
Δ = b2-4ac
Δ = 102-4·5·(-3)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{10}}{2*5}=\frac{-10-4\sqrt{10}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{10}}{2*5}=\frac{-10+4\sqrt{10}}{10} $
| 5t^2+10-3=0 | | 2x-1-1=x-3(5+x) | | 5w=8w | | n²=3n+11 | | j=0.05(40)-0.05(45) | | |3v+1|=17 | | 64^x=512^{x-5} | | x+36=9-2x² | | 4w*w=36 | | 3x(X+12)=12 | | 4x-1+2x=2x+1 | | ((5x+6)/4)=7 | | 5x6=90/ | | 2x+4+3x=2x+2=1 | | 9+7=-4(4x-4) | | -12+32=-5(x+1) | | 78x=-156 | | 2(x-8)+6=-10 | | 15=-1,25x^2+10x | | 2+2=4(2x-1) | | 3m/4+10=8 | | 15=-1,75x^2+14x | | 15=-1.75x+14x | | 35=25a-1/5 | | 2(3x+9)=-41+23 | | 8x+12=-8x+24 | | 2-8a=4-5a | | 2(y−6)=6 | | 8x+4-x²=0 | | (x-3)(2x+1)=3 | | -7a=28-4a | | -7a=28-49 |